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Alx+tract-Minimum-dissipation convective heat removal from a wall to a flowing fluid stream by scale- 
matched flow destabilization is considered. A universal scaling for the optimization problem is developed, 
and it is shown from Reynolds analogy-hydrodynamic stability arguments that the dissipation-minimizing 
transport solution corresponds to flow destabilization at a Reynolds number (and associated spatial scare) 
that increases (decreases) with increasing thermal load. The significant dissipation savings possible through 
optimization are demonstrated in a sample optimization study for heat transfer in a channel based on 
experimental data for several enhancement procedures, The optimizing transport enhancement scheme is 
shown to proceed from macroscale eddy promoters to microgroove roughness elements with increasing 

thermal load, thus verifying the validity of the scale-matched destabilization theory. 

1. INTRODUCTION 

THE PROBLEM of removal of heat from a surface to 
a flowing fluid stream arises in a large number of 
important technological systems. It is clear that in any 
particular application the necessary heat transfer can 
be effected in a number of different ways, and thus for 
the design problem to be well posed a cost function 

must be introduced that reflects the constraints and 
goals of the overall system. We address here the opti- 
mization problem corresponding to maintaining a 
fixed thermal load while minimizing shear stress, pres- 
sure drop, and viscous dissipation (pumping power). 

The choice of momentum-transport-penalty heat 
transfer optimization is motivated by the following 
facts : excessive shear stress can adversely effect struc- 
tural integrity (e.g. in biomedical applications [l J) ; 
excessive pressure drop can result in large structural 
loads leading to failure or significant cost of materials ; 
and excessive power dissipation can lead to increases 
in the size and cost of the prime mover, as well as 
in associated manufacturing and operating costs [2]. 
Although it is clear that a design which minimizes 
momentum transport will be ‘good’, it is also clear 
that in many applications other criteria may be of 
equal importance, such as size, material cost, man- 
ufacturability, safety, and acoustic emission [3,4]. 

A number of studies have been undertaken in the 
past that aim to optimize (or improve) heat removal 
with respect to various penalties, such as material 
and manufacturing cost [5], pressure drop [5, 61, and 
pumping power [5, 71. Much of this previous work 
on transport optimization has focused on particular 
applications, and has addressed neither a general 
framework for optimization, nor a general theory for 
the physical phenomena that relate transport 
enhancement and dissipation. In this paper, we focus 

on these two fundamental aspects of optimal heat 
transfer design : the analysis of the optimization prob- 
lem based on reduced variable ‘universal’ scalings ; 
and the development of a basic understanding of the 
underlying physical transport phenomena so as to 
allow for a priori evaluation of the viability of a par- 
ticular thermal-hydraulic design. 

In Section 2 we define the channel flow con- 
figuration of interest and state the optimization prob- 
lem. In Section 3 we solve the optimization problem 
in a formal sense, and relate the results via Reynolds’ 
analogy to a general hydrodynamic stability criteria. 
In Section 4 we describe the experimental apparatus 
used to generate the thermal-hydraulic data required 
by the optimization procedure. Lastly, in Section 5, 
we present results of a channel optimization study 
based on several augmentation schemes, and dem- 
onstrate the significant savings possible through opti- 
mal design. 

2. THE OPTIMIZATION PROBLEM 

We consider the problem shown in Fig. 1 of incom- 
pressible flow in a plane channel of length L and 
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FIG. 1. Basic channel geometry for the optimization study. 
The channel is of length L and height H, with uniform heat 
flux q” imposed on the top wall, aD,, and an adiabatic 

bottom surface, 80,. 

2023 



groove length (Fig. 2(b)) 
area of the y-z channel cross section 
distance of the eddy promoters from the 
top wall (Fig. 2(a)) 
constant in equation (A9a) 
groove dwell (Fig. 2(b)) 
specific heat at constant pressure 
constant in equation (A9b) 
diameter of the eddy promoters 

(Fig. 2(a)) 
bottom w&l surface (Fig. I) 
top wall surface (Fig. 1) 
groove depth (Fig. 2(b)) 
friction factor defined by equation (11) 
gravitational acceleration 
function defined by equation (A4) 
function defined by equation (Al 1) 
channel height (Fig 1) 
thermal conductivity 
distance between successive eddy- 
promoter cylinders (Fig. 2(a)) 
channel length (Fig. I ) 
Nusseh number, y”‘H&@ 
pressure drop 
Prandtl number, V/IX 
heat flux per unit area 
Reynolds number, VH/v 
time 
temperature 
total temperature difference &fined by 
equation (2) 
time-averaged temperature difference 
between wall temperature and mixed 
mean temperature of the fluid 
velocity components in the X-, _P- and 
z-directions, respectively 
friction velocity, J(rw Jp) 
velocity vector 
channel-average velocity defined by 
equation (1) 

X, y, z Cartesian coordinates 
Y set of fluid properties, {k, pcP, v, p) 

Z” set of geometric parameters for channel 
geometry n. 

Greek symbols 
cn thermaf diffusivity, kjpc, 

B constant in equation (A9b) 

Y Reynolds’ analogy constant 
6 non-analogous moments transfer 

coefEcient in equation ( f 4) 

q constant in equation {A9a) 
I non-dimensional channel height, 

y”H/kcY T 
‘A non-dimensional thermal load, q”L/k67 

!J non-dimensional inverse velocity, 
q’“L/(kcYTR Pr) 

V kinematic viscosity 

5 constant in equation (A9b) 

% shear stress at the wail 
Y non-d~mensionai dissipation parameter 

defined by equation (7). 

Subscripts 
C critical 
i inlet 
m mixed mean 
n channel geometry 
o exit 
tr transition 

0” 
wall 
base geometry, smooth channel 

i( periodic eddy-promoter channel 
2 periodic micro~oo~ed chmnei. 

Superticripts 
* optimum 
UB upper bound. 

height l3, with uniform heat flux g” imposed on the 
top wall a&, and an adiabatic bottom surface t?Bs. 
The Bow is assumed to be hydrodynamically and 
thermally fuily developed in X, and independent (on 
average) of the spanwise coordinate .a. The flow is 
forced by a pressure gradient API& resulting in a 
channel-average velocity of 

where u is the x-component of the velocity, v = UP 
$ uy + ~2, A the area of the y-z channel cross section, 
and (a> refers to temporal average. The fluid is 
assumed to be characterized by constant (temper- 

ature-independent) properties given by the thermal 
conductivity k, the volumetric specific heat PC,, the 
kinematic viscosity v, and the density p. Natural cun- 
vection and all compressibility elects are assumed 
negligible. The set of physical properties will be 
denoted Y = (k, pcPT V, ~1. 

In addition to the basic geometry in Pig. 1, we 
shah also consider two heat transfer enhancements 
corresponding to the addition of (a) periodic eddy 
promoters and (b) microgrooves, shown sche- 
matically in Figs. 2(a) and (b), respectively. The eddy 
promoters in Fig, 2(a) are adiabatic, and thus they 
effect the heat transfer only through flow modi- 
fication. We shall denote the base geometry in Fig. 1 
as Zot and describe the two enhancement geometries 
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FIG. 2(a). The geometry of the periodic eddy-promoter chan- 
nel is described by the distance between successive eddy- 
promoter cylinders, 1, the diameter of the eddy promoters, 
d, and the distance of the eddy promoters from the top wall, 

b. The eddy-promoter cylinders are adiabatic. 

FIG. 2(b). The geometry of the periodic microgrooved chan- 
nel is described by the depth of the groove, e, the groove 
length, a, and the groove dwell, c. The vertical scale of the 

grooves is greatly exaggerated for clarity. 

by the sets Z,,, 2, = (d/H, b/H, l/H} for the eddy pro- 
moters, and Z2 = {e/H, a/H, c/H} for the micro- 
grooved channels. Here d is the eddy promoter cyl- 
inder diameter, b the distance between the eddy 
promoters and the top wall, and 1 the distance between 
successive cylinders in the array; e is the microgroove 
depth, a the groove length, and c the groove dwell. The 
geometries Z,, Z,, Z, are all periodic, and thus the 
concept of being fully developed is well defined [8,9]. 

We now construct the minimum-dissipation trans- 
port problem associated with these geometries (we 
do not consider the minimum-stress and minimum- 
pressure-drop problems as they follow along similar 
lines). To begin, we write the temperature difference 
6 T = Tw,O - T,,i as 

GT=sH+;iT 
P 

where T,, is the heated wali temperature at x = L, 
Tm,i the mixed mean temperature of the fluid at the 
inlet (x = 0), and E= (TJx)- T,(x)). Here the 
overbar refers to an average in x over length scales of 
the order of the periodic enhancement structures (1 
and a are assumed to be small compared to L). The 
mixed mean temperature T,(x) is given by 

G(x)=&, x 
SI 

H/2 
(UT) dy dz. (3) 

m 
_ 

H/2 

Note that temperature gradients across the channel 
walls are assumed negligible. 

In terms of the above temperature difference we can 
now state the optimization problem as 

min {AP VH} 
V.H.2~ 

for fixed {q”, ST, L, Y} (4) 

where the parameter {AP VH) is the total viscous 
dissipation (pumping power) per unit width of the 
channel. Essentially, problem (4) requires that for a 
given thermal load, q”, that we find the flow velocity 
V, channel size H, and enhancement parameters Z, 
that minimize the total dissipation for a fixed 
maximum wall temperature ST. We have chosen the 
wall temperature as our thermal constraint as this is 
the quantity that typically limits the structural integ- 
rity and performance of machinery or devices on the 
heated surface (e.g. computer chips [4,6, 7). 

Optimization (4) corresponds to a multivariate con- 
strained minimization problem, and inasmuch is 
rather difficult to solve. Furthermore, the relationship 
between the dissipation and the control and constraint 
variables will be highly nonlinear, requiring the solu- 
tion of the full Navier-Stokes equation. Our approach 
to the problem consists of two parts: first, a non- 
dimensional scaling will be introduced that reduces 
the optimization problem to a ‘universal’ curve which 
can be obtained on the basis of standard thermal 
and hydraulic characterizations ; second, a physical 
analysis will be developed that allows for a priori 
evaluation of the relative effectiveness of various Z, 
as regards dissipation minimization. 

3. SCALING ANALYSIS OF THE 

OPTIMIZATION PROBLEM 

3.1. Nondimensionalization 
To reduce problem (4) to a universal form we intro- 

duce a nondimensionalization in which only fixed con- 
straint variables (not control variables) are used to 
scale length, time, and temperature. To start, we intro- 
duce a Prandtl number, a Reynolds number, and a 
Nusselt number 

Pr = v/a 

R = VH/v 
- 

Nu(R, Pr; Z,) = q”H/kAT 

and a thermal load parameter 

(5a) 

(5b) 

(5c) 

A = q”L/kBT. (6) 

A non-dimensional dissipation parameter Y is detined 
as 

~ = 3’2 APVHPr2 L2 

55 pv3 . (7) 

Lastly, we introduce two non-dimensional control 
parameters 

1= q”H/kST (8) 

p = q”L/(kSTR Pr) (9) 

where A is a non-dimensional channel height, and p a 
non-dimensional inverse velocity. In terms of the non- 
dimensional variables, equations (S)-(9), the opti- 
mization problem (4) can be written as 
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n$zY for fixed (q”, ST, L, Y} 
. n UW 

subject to the fixed 6T constraint (2) 

i./Nu+/.~ = 1. (lob) 

Note p can be interpreted as the ratio of the difference 
between the fluid mixed mean temperature at the exit 
(x = L) and the inlet (X = 0), to the total temperature 
difference 6T. 

To proceed further we introduce the friction factor 

(11) 

to write equation (7) as 

(12) 

Finally, using the constraint 1 = Nu(1 -II) and the 
relation R = A/p Pr we arrive at the following prob- 
lem : 

min W, -7) 
v~Lt[0,ll.z,, 

332 A” f’(Alp Pr ; Z”> 
S5 Pr Nu3(A/pPr, Pr; Z,,)p3(1 -p)” (13) 

Note that by ‘optimal Z,’ we refer to both the choice 
of n and the choice of non-dimensional parameters 
within Z,,. 

It can be seen from equation (13) that for a given 
Z, the optimal operating conditions depend only on 
the Prandtl number Pr, the thermal load A, and 
the non-dimensional thermal (Nu(R, Pr ; Z,)) and 
hydraulic (f(R ; Z,)) behavior of the system. In prac- 
tice, the optimization proceeds as follows : 

(1) choose a fluid (Pv) and the thermal load (A) ; 
(2) for each Z, find IL,* such that 

YX = Y(/C,Z,) < Y(LL,Z,)‘d&O, 11: 

(3) find Z,. such that 

Y’* = Y(@*, Z,,*) < Y(pZ,*, Z,)V z,. 

The dimensional V and H are then determined as 
follows : p implies R, Nu and hence 1; 1 implies H; 
knowledge of Hand R then gives the velocity V. 

3.2. General hydrodynamic considerations 
The above minimization for a given Z,, is relatively 

simple, and can be effected once one set of exper- 
imental measurements Nu(R, Pr; Z,), f(R; Z,) have 
been conducted (for any H). Unfortunately, the num- 
ber of parameters in each Z,, and the potentially large 
number of different Z, (e.g. eddy promoters, micro- 
grooves, flow oscillation [3, lo]) can lead to an intrac- 
table problem. It is thus clear that a broad theory 
relating hydrodynamic behavior and scalar transport 
is required in order to reduce the number of interesting 
enhancement geometries. To this end, we analyze our 

problem for the case of Reynolds’ analogy flows 
[ 11, 121, in which we assume that 

where ‘/ is ‘Reynolds’ analogy constant’ which should 
scale as Pr- ‘13 (and is a function only of Pr), and B 
represents non-analogous momentum transfer [ll]. 
Note that although equation (14) is perfectly general, 
it will only be useful for small E/Nu. A detailed analysis 
of E for transitional eddy promoter flows is given 
in ref. [Ill, in which the utility of expansion (14) is 
demonstrated. 

We now insert equation (14) into equation (13), 
and neglect the O(E) term to reduce our minimization 
problem to 

3322 
min Y = -- 

yA’ 1 

vPEro.ll.z,, 55 Nu*(h/p Pr, Pr; Z,) ~‘(1 -p)’ 
(15) 

To get an upper bound for Y~,Y~uB, we neglect vari- 
ations of Nu with to to obtain (see the Appendix) 

Y*‘* = yA5 Nu-‘(5A/2Pr, Pr; Z,,). ” (16) 

Assuming (plausibly) that Ye” and Y,* behave simi- 
larly, we can make the following conclusions as 
regards the relationship between enhancement and 
dissipation minimization. First, we see that an 
increase in Nu at fixed R (here 5A2/2Pr) by an enhance- 
ment Z, does result in a decrease in dissipation Y (in 
fact a quadratic decrease), consistent with the con- 
ventional wisdom that an increase in Nu(R) is in some 
sense ‘good’. Note that for the minimum-stress and 
minimum-pressure-drop problems the results are 
similar, however, the reduction in these quantities is 
only linear in NC ‘. Second, as the thermal load A 
increases, an enhancement procedure is required 
which modifies the Nusselt number at higher Reyn- 
olds numbers. In essence, equation (16) indicates that 
5A/2Pr is roughly the Reynolds number at which 
the most important dissipation reduction can be 
achieved ; increasing Nu at other Reynolds numbers 
will have a less significant effect. 

Both of these conclusions can be interpreted in 
terms of our previous work on transport enhancement 
by flow destabilization [lo, 111. As regards the first 
point, the increase in Nu at fixed R is best considered 
as a decrease in the stability of the flow, that is, an 
increase in the correlated velocity-temperature fluc- 
tuations (perhaps better measured by a Stanton num- 
ber than a Nusselt number). The enhancement prob- 
lem then becomes one of maximizing destabilization 
while maintaining non-analogous momentum trans- 
port (E in equation (14)) small ; a detailed analysis 
of this problem for laminar unsteady eddy promoter 
flows is given in ref. [l 11. As regards the second point, 
it is clear that once a Aow is destabilized by some 
enhancement procedure Z,, at some critical Reynolds 
number R,, for R >> R, there will be significant non- 



Mi~irn~~~si~tio~ heat removal by scale-matched flow destabilization 2027 

linear saturation : the relative increase in Nusselt num- 
ber will decrease, and non-analogous drag will domi- 
nate. As A increases and the Reynolds rmmber at 
which o@n& enhancement occtlrs incr@se& new 
augmentation schemes 2, must be effected to de- 
stabilize the new flow. As we know that with increasing 
R the range of naturally unstable scales increases (e.g. 
the energy cascade), this implies that with increasing 
A we require destabilization at smaller and smaller 
(int~nsi~ly stable) spatial scales-in essence, se&+ 
rpratched ~~~~~~iza~~~~. 

4. EXPERIMENTAL APPARATUS AND 

THERMAL-HYDRAULIC DATA 

To demonstra~ the utility and validity of the opti- 
mization procedures and physical arguments 
described in the previous sections, we have conducted 
a series of experiments for the geometries Z,, Z,, Zz 
shown in Figs. 1 and 2, The experiments were carried 
out in air (pr = 0.7 I) in a low-turbulence wind tunnel ; 
details of the Z1 and Zz test sections are presented in 
Figs. 3 and 4, respectively. The only cases studied 
in this paper are Z,, Z, = {d/H = 0.2, b/H = 0.25, 
l/W = 3.33}, and Zz = {e/H = 0.025, afH = 0.035, 
c/H = 0.01.5>. The ratio of the width af the channel 
W, to the channel height H is W/H = 9.0, which is 
considered sufficiently large that the results can be 
considered close to those for an ‘infinite’ planar &an- 
nel ; the Friction factor data presented are further cor- 
rected by subtracting out the shear stmss at the side 
walls. The channel is fitted with electrical strip heaters 
on the top channel wall to deliver the necessary uni- 
form heat flux q”. 

For the o~~j~zatio~ studies of interest we require 
a set of f, Nit data for each Z,. A single H is chosen, 
and the flow rate is varied to achieve a range of Reyn- 
olds numbers. For each Reynolds number the pres- 
sure drop and fluid and wall temperatures are 
measured, thus allowing the f (R ; Z,) and 9&(R, 
Pr ; Z,) curves to be construeted. The pressure drop is 

0. 

i 
f Eddy P/emoters 1 /c---Y 

11 Eddy bwmotrrs Pl&tio 

Fra 3. Details of the teat section for the geometry Z,. For 
the geometry ZO the same test section is used with the eddy 

promoters removed. Ail units are in meters. 

F?m. 4. Details of the test section for the geometry 2,. The 
inner walls in the heated region are made of high conductivity 
aluminum to insure that the temperature difference between 
the thermocouples and the grooved surface is small. The 
ticrogro~ws are machined on the ahunkmm plates to high 

precision using a shaper. Ail units are in meters. 

measured with an MKS Baratron differential pressure 
transducer, and the flow rate is calculated from pitot- 
static velocity measurements at outiow. Temperature 
measurements are made using ~o~~r~ns~~ 
thermocouples. All measurements are deemed accur- 
ate to the 10% necessary for the optimization studies 
undertaken. 

Lastly, we note that the flow is allowed to become 
thermaiiy fuily developed in the streamwise direction 
x before any measurem~ts are taken. All measure- 
ments are taken after a distance of roughly 5SH from 
the inlet of the channel, and roughly 35H from the 
beginning of the heated region. The resulting entrance 
regions are sufficient to obtain hydraulically and 
thermal& fully-developed ff at-channel laminar flows 
for Reynolds numbers R < XOD, and ~l~~~eveio~d 
flat-channel turbulent flows for Reynolds numbers 
R > 5500 [I 9. The entrance length for the geometries 
Z,, Zz will be much shorter than for the smooth chan- 
nel Z0 as a result of destabilization. In addition to 
these theoretical considerations of entrance-length 
effects, it has also been verified directly fsom measure- 
ment that both the (tide-average) wall pressure and 
temperature vary linearly with x, consistent with fully 
developed flow. 

We plot in Figs. 5 and 6 the f (R; Z,) and 
Nu(R, Pr = 0.71; Z,) curves for the geometries 
Z,, ZIP Zz that will be used in the o~~iza~on studies 
that follow. We supplement our new data with ana- 
lytical solutions [14] and numerical solutions [ll] at 
lower Reynolds numbers, and previaus experimental 
correlations and power laws at higher Reynolds num- 
bers [14]. The Nusselt number data obtained from 
Pr = 1 numerical solutions [I l] are corrected for the 
Prandtl number of interest here (Pr = 0.71) assuming 
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102 IO3 IO4 I05 

R 

FIG. 5. Friction coefficient data. Z, (smooth channel) : 0, experiment ; -. -, laminar analytical solution 
f = 12/R ; ---, turbulent correlation f = 0.040/R’ 2 [ 141 (the dashed line indicates the Reynolds number 
range for which the correlation is somewhat suspect). Z, (eddy promoters) : 0, experiment ; 0, numerical 
[l 11. Z, (microgrooves) : A, experiment. In all cases the solid symbols refer to laminar (steady or unsteady) 
flows, and the open symbols refer to turbulent flows. Note the ‘premature’ drag crisis (Cl) in the Z, eddy- 

promoter geometry when the channel flow becomes turbulent at R = R,, 5 1300. 

a Prandtl number power law dependence on enhance- sitional Reynolds number, R,, = 1300, although it is 
ment as given in ref. [lo]. Note that for purposes clear that the correlations are strictly valid only at 
of approximate optimization we have extended the somewhat larger R. The suspect region of the cor- 
turbulent correlations for f and Nu down to the tran- relation is indicated by a dashed line. 

Nu 

FIG. 6. Heat transfer data for Pr = 0.7 1, Z0 (smooth channel) : 0, experiment ; - .-, laminar analytical 
solution NU = 2.70 ; -, turbulent correlation Nu = 0.020R”-* Pro,4 [18] (the dashed line indicates the 
Reynolds number range for which the correlation is somewhat suspect). Z, (eddy promoters) : 0, experi- 
ment (0 indicates transitional drag crisis) ; 0, numerical [l 11. Z, (microgrooves) : A, experiment. In all 
cases the solid symbols refer to laminar (steady or unsteady) flows, and the open symbols refer to turbulent 

flows. 
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FIG. 7. A plot of Y(y, Z,) for a fked thermal load of A = 800 based on the data sets of Figs. 5 and 6. The 
minimum of Y(p, Z.) for each Z, curve gives one point Y,,* (A = 800) in Fig. 8. Note that from p,,, we 

can find the optimizing channel height Hand flow velocity V. 

The experiments for the microgrooved channel geometry 2,. This approximation appears reasonable 
were, in fact, carried out for heating and micro- for the small e/H considered here. 
grooves, on both channel walls, as shown in Fig. 4. To 
construct one-sided heating/microgrooved data from 
these experiments we assume that NuI_sidcd = NUz_sided, 

5. OPTIMIZATION RESULTS 

and that J-sided N 1/2lf2_sided +fC ; ZJ], where We present here results of the optimization pro- 
f(- ; Z,) refers to the friction factor in the flat-channel cedure developed in Section 3 based on the data of 

10’6 

10’5 

IO’4 

lOI3 

10’2 

IO” 

IO’O 

I09 

108 

IO’ 

I06 

IO’ IO2 IO3 IO4 

A 

FIG. 8. A plot of Y:(A) for Z,,, Z,, and Z2 based on the data sets of Figs. 5 and 6. Z, (smooth channel) ; 
-.-, global optimum corresponds to laminar flow; -, global optimum corresponds to turbulent 
flow. Z, (eddy promoters): 0, experiment (Cl indicates transitional drag crisis). Z2 (microgrooves): 

A, experiment. 
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Section 4. In Fig. 7 we plot Y(p, Z,,) for a fixed 
A = 800 and Z,, Z,, Z,, while in Fig. 8 we plot Y:(A) 
for the geometries &, Zi, Z,. Figure 7 demonstrates 
how Fig. 8 is constructed: the minims of each Z, 
curve in Fig, 7 results in one point (at A = 800) on 
Fig. 8, as described by the optimization procedure 
outlined at the end of Section 3.1. For the cases of 
laminar flat-channel flow and power-law correlation 
turbulent flat-channel flow the minimization over n 
for each A can be carried out analytically, as sum- 
marized in the Appendix. It can be seen from Fig. 7 
that for a given geometry Z,, operating at a non- 
optimal n can significantly increase the dissipation ; 
this illustrates the importance of optimization even 
for the case of ‘unenhanced’ heat transfer. 

Figure 8 demonstrates that the scale-matched desta- 
bilization theory proposed in Section 3 is, indeed, 
valid. First, it is seen from Fig. 8 that for very low A, 
Z0 laminar flow performs the best, as the A-R 

matching (Section 3) insures that enhancement can 
have little effect. Second, as A increases, the macroscale 
eddy promoters Zr becomes relatively more efficient 
than flat channels 2,; this is due to the fact that the 
eddy promoters destabilize the tIow and increase the 
Nusselt number, thereby decreasing dissipation by 
equation (16). The fact that E in equation (14) is small 
for these flows despite significant destabilization is 
due to the fact that channel flows are only viscously 
(slightly) stable, as described in detail in ref. [ 1 I]. Note 
that the transitional eddy-promoter flows are optimal 
over a broad range of A due to the beneficial effect of 
the premature cylinder drag crisis ; in fact, it appears 
that laminar eddy promoters are never selected, as 
they are bettered at low A by laminar Z, flow, and at 
higher A by transitional eddy promoters. 

Third, as A increases even further, eddy promoters 
are no longer efficient at destabilizing the flow at 
R - A (the necessary R for destabilization according 
to equation (16)), due to the fact that the eddy-pro- 
moter macroscales are themselves naturally unstable 
at this turbulent Reynolds number. It is at this point 
that the microgrooves become important, as they 
match the ‘stable’ part of the Bow, the viscous sub- 
layer [15]. The microgrooves become important at 
u,e/v g 30 (implying R z 16 666 and thus A % 1400), 
consistent with past studies on the effect of roughness 
in transport processes. Here uy is the friction velocity, 
which is defined as u* = J(rW!p), where r, is the shear 
stress at the wall. (Details of the physics of our regular 
two-dimensional uniform roughness as compared to 
‘sand grain’ roughness [I 61 are given elsewhere [17].) 
Note the savings due to flow destabilization at low A 
appear to be larger than those at high A; although 
this may reflect the intrinsic instability of turbulent 
flows, it may also be due to a non-optimized micro- 
groove surface. 

There is a great deal of information in Fig. 8 as 
regards the scaling of minimum dissipation with ther- 
mal load. For instance, if A is increased from 10’ to 
lo3 (due to, say, a decrease in the allowable 67’ by a 

factor of lo), the dimensional minimum dissipation 
(BP VH}* - Y* increases by roughly a factor of IO’ ; 
this illustrates the rather severe penalty associated 
with stringent thermal load requirements. If we 
assume that Nu - Rt’. it follows from Reynoids‘ 

analogy argument and upper bound (16) that the 
minimum dissipation Y* scales as Y* - A’ I”. which 
is consistent with the data of Fig. 8 for a (physically 
plausible) value of/l slightly less than unity. 

Much work remains to be done on unders~~indin~ 
the detailed physics of both the macroscale and micro- 
scale destabilization [I 1, 171, as well as on extending 
the optimization procedures described here to include 
non-fully developed effects. inlet and exit efkcls. and 

more complicated configurations [ 171. These exten- 
sions are relegated to other papers : our primary focus 
in the current paper is on the scaling of the minim~~m- 
dissipation optimization problem. and on under- 
standing the relationship between the physics of trxns- 
port enhancement and dissipation minimization. 
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APPENDIX 

We consider here three cases in which the optimization 
problem (13) 

can be ‘solved’ in closed form. The three flows amenable to 
analytical treatment are : Reynolds’ analogy flows ; laminar 
W-channel flow; and turbulent flat-channel flow. These 
exact optimizations are interesting not only in terms of the 
results they produce, but also in terms of the insight they 
give into the optimization procedure. 

Reynolds a.nalogyJlow upper bound 
Here we assume that equation (14) holds with E = 0 

f(R) = y 

for which expression (Al) can then be written as 

y&z 5 

55 Nu’(i/tPr,Pr) ~‘(*~p)~. (A3) 

To proceed further we construct an upper bound for the 
minimum of YQ by neglecting the variation of iVu with n 
and minimizing the function 

SW = Wl -P)31-‘Po[0, 11. (44) 

It is readily shown that g(2/5) C g@) for all &O, 11, from 
which it directly follows that 

/PUB = 215 (A5a) 

Yzue = yA5 Nu2(5A/2Pr, Pr). (A5b) 

This result is used extensively in the paper to motivate the 
concept of scale-matched destabilization. 

LaminarjZat-channelflow 
For laminar flat channel flow we have the exact solutions 

[141 

f = 12/R 

Nu = 2.70 

(A6a) 

(A6b) 

giving for Y Q 

647) 

From our previous analysis of Reynolds’ analogy flows 
it is clear that if we minimize equation (A7) over all &O, l] 
that we will obtain p* = 2/5, Y* = 0.305A5. 

The result Y* = 0.305A5 is only valid for a limited range 
of A, as laminar flow can only occur for R < R,. (We take 
4 here to be R, = 1300; although R,, can be larger than 
this value in quiet experiments, in most engineering situations 
Ru = 1300 is a very good predictor of transition.) This 
implies from equation (9) that we should minimize Y &) only 
for (A/R,, Pr) < p < 1. If (A/R, Pr) =z 2/5 our previous result 
holds, p* = 215, Y* = 0.305A5, however, if (A/R,, Pr) > 215 
the minimum Y now occurs at the endpoint p = A/R,, Pr. 
Our tinal result for laminar flow is therefore 

2R,, Pr 
O<A< 5 - = 369.2 /I* = 215 

Y* = 0.305A5 (A8a) 

369.2 < A c R, Pr = 923 p* = A/923 

8975.05A3 

y* = (1 -(A/923))’ (A8b) 

where the numerical values given are for Pr = 0.71, 
Ru = 1300. No laminar solution exists for A z R,, Pr, as in 
this case the mixed-mean temperature rise alone is greater 
than the allowable 6T. Note that as A approaches the limiting 
value & Pr the dissipation goes to infinity, as VH is finite 
but H goes to zero. 

We assume here power law correlations for the friction 
factor and Nusselt number 

giving 

f =BR” 

Nu = CRs Pr’ 

(A9a) 

(A9b) 

332 B he+?--38 
Y(&=--- 

1 
55 C’ pr~+s+x-s~ n3+,--3~(,_/,)3’ (AlO) 

Defining the function Q(& as 

s”b) = ~3+v3L7(1_p)3]-’ 
(Al 1) 

it can be readily shown that for p* = (3 +q -3/J)/ 
(6+q-338) B(p*) < g(p)Vpe[O, 11, from which the cor- 
responding minimum dissipation can be calculated from 
equation (AlO) as Y* = Y+*). 

For turbulent flow in the channel shown in Fig. 1 we have 
B = 0.04, n = -0.2, C = 0.02, fi = 0.8, 5 = 0.4 [14, 181, for 
which we obtain 

/I* = 2117 (A12a) 

‘I’* = 258.14A3.4 (A12b) 
where the numerical value in equation (A12b) is for 
Pr = 0.71. The value of p* = 2/17 for turbulent flow is less 
than the corresponding value (A8a) ,u* = 2/5 for a laminar 
flow, implying that for optimal-performance turbulent flow 
relatively more of the temperature rise should be lateral as 
opposed to streamwise. 

Turbulent flows can only exist for R > R, * p < 
(A/R,Pr), and thus equations (A12) are, in fact, only 
valid for (A/R, Pr) > 2/17. To be more precise for lower A 
an ‘endpoint’ analysis similar to that used for laminar 
flow should be performed, the detail of which we do not 
present here. Note that the actual flat-channel minimization 
summarized in Fig. 8 represents the minimum over both 
laminar and turbulent flows, with endpoint extrema taken 
into account. 
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ENLEVEMENT DE CHALEUR AVEC DISSIPATION MINIMALE PAR 
DESTABILISATION CONTROLEE DE L’ECOULEMENT 

Rbum&-On considere l’enlevement convectif de chaleur, a dissipation minimale, sur une paroi par un fluide 
avec distabilisation de l’ecoulement. On developpe un schema universe1 pour le probltme d’optimisation et 
on montre a partir des arguments lies a l’analogie de Reynolds et a la stabilite hydrodynamique que la 
solution du transport a dissipation minimale correspond a la destabilisation d’tcoulement a un nombre de 
Reynolds (et une echelle spatiale associte) qui augmente (diminue) quand la charge thermique croit. Les 
economies significatives de dissipation sont montrees possibles dans une etude simple d’optimisation pour 
le transfert de chaleur dans un canal, a partir de don&es experimentales pour differentes procedures 
d’accroissement. Le schema d’optimisation de l’augmentation de transport va depuis les promoteurs de 
turbulence a macroechelle jusqu’aux elements de rugosite a microsillon, avec des charges thermiques 

croissantes, ce que vtrifie la validite de la presente theorie. 

MINIMALE ABFUHR VON DISSIPATIONSWARME DURCH 
STROMUNGSDESTABILISIERUNG 

Zusammenfassung-Es wird die Minimierung der konvektiven DissipationswSirmeabfuhr von einer Wand 
an ein striimendes Fluid untersucht, wobei eine destabilisierende Strijmungsbeeinflussung in Erwlgung 
gezogen wird. Eine allgemeingtiltige Einteilung fiir die Problemoptimierung wird entwickelt. Uber die 
Reynoldsanalogie zu den hydrodynamischen Stabilitiitskriterien wird gezeigt, dag die dissipations- 
minimierende Losung des Transportproblems, bei steigender thermischer Last (gegebene Reynoldszahl 
und entsprechende raumliche GroBenordnung) mit einer steigenden Stromungsdestabilisation in 
Einklang steht. Durch eine, auf experimentelle Daten gesttitzte, Optimierungsstudie wird mit Hilfe 
verschiedener MaDstabsvergr6Berungen die signifikante Verminderung der Reibungsverluste am Beispiel 
des Wlrmetibergangs an einem Kanal nachgewiesen. Die optimale MaBstabsvergrBBenmg fiir die Trans- 
portvorgange wird benutzt, urn bei steigender thermischer Last von makroskopischen Wirbelerzeugern auf 
Elemente mit Micro-Rauhigkeiten zu schliel3en und hierdurch die Richtigkeit der Destabilisationstheorie 

zu beweisen. 

TEIIJIOOTBOJf C MkiHHMAJIbHO$i flHCCHfIAHHEfi, OPFAHH30BAHHOfi IIYTEM 
BBEAEHH5I B I-IOTOK B03MYIQEHBI? COOTBETCTBYIOIQEFO MACIIITAIiA 

AtMOTWW-RaCCMaTpnBaeTCa KOHBeKTUBHbtfi OTBOA TenJta 07 CTeHKn K nOTOKy ~H,QKOCTB C MHHHMa- 
JtbHbIM paCCeKHEleh4 npn BHeCeHWH B nOTOK BO3MymeHnfi COOTBeTCTByIOmerO MaCIUTa6a. Paspa6orana 
ynnsepcanbriaa rexrnixa HOPMH~OBKU AJIR npo6nehn.t onrnMnsamin, n na ocrioae ananorrrn Pefino- 
nbnca ri coo6pameewii rriaporrnnar4a~ecxoii ~CTO~IWBOCTE~ noKa3aH0, 9~0 peruernie nnn cnyvar ~mrsi- 
Ma,tbHOrO paCCeRH&iR COOTBeTCTByeT neCTa6nJni3aLWin nOTOKa npn WiCJle ReirHOJtbACa (H 
COOTBePCTByIomeM npOCTpaHCTBeHHOM MacmTa6e), KOTOpOe BO3paCTaeT (yMeHbmaeTCa) C yBeJtEiKeH&ieM 
TenJtOBOii Harpy3KH. Ha OCHOBe 3KCnepHMeHTanbHbtX AaHHbIX, nOJtyKeHHbtX npn HCCJtenOBaHBn nep- 
HOG3 Tenna B KaEWte, nOKa3aHa BOSMOKWOCTb 3HaYUTenbHOrO CHBPeHnK paCCeKHna ,iI,tX HeCKOJtbKnX 
BapnaHTOB HHTeHCB@KaWn nepeHOCa. nOKZKiaH0, ST0 npn yBeJUNeHHn TetLKOBOii HarPy3KB UHTeHCn- 
~HKa~liSO nepeHOCa On~neJlfiIoT CHa’iaJla MaKpOMaCmTa6HbIe BHXpIi, a 3aTCM 3JICMCHTbl MUK&WCTPyK- 

TypHOfi mepOXOBaTOCTU. 


