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Abstract—Minimum-dissipation convective heat removal from a wall to a flowing fluid stream by scale-
matched flow destabilization is considered. A universal scaling for the optimization problem is developed,
and it is shown from Reynolds analogy-hydrodynamic stability arguments that the dissipation-minimizing
transport solution corresponds to flow destabilization at a Reynolds number (and associated spatial scale)
that increases (decreases) with increasing thermal load. The significant dissipation savings possible through
optimization are demonstrated in a sample optimization study for heat transfer in a channel based on
experimental data for several enhancement procedures. The optimizing transport enhancement scheme is
shown to proceed from macroscale eddy promoters to microgroove roughness elements with increasing
thermal load, thus verifying the validity of the scale-matched destabilization theory.

1. INTRODUCTION

THE PROBLEM of removal of heat from a surface to
a flowing fluid stream arises in a large number of
important technological systems. It is clear that in any
particular application the necessary heat transfer can
be effected in a number of different ways, and thus for
the design problem to be well posed a cost function
must be introduced that reflects the constraints and
goals of the overall system. We address here the opti-
mization problem corresponding to maintaining a
fixed thermal load while minimizing shear stress, pres-
sure drop, and viscous dissipation (pumping power).

The choice of momentum—transport—penalty heat
transfer optimization is motivated by the following
facts : excessive shear stress can adversely effect struc-
tural integrity (e.g. in biomedical applications [1]);
excessive pressure drop can result in large structural
loads leading to failure or significant cost of materials;
and excessive power dissipation can lead to increases
in the size and cost of the prime mover, as well as
in associated manufacturing and operating costs [2].
Although it is clear that a design which minimizes
momentum transport will be ‘good’, it is also clear
that in many applications other criteria may be of
equal importance, such as size, material cost, man-
ufacturability, safety, and acoustic emission [3, 4].

A number of studies have been undertaken in the
past that aim to optimize (or improve) heat removal
with respect to various penalties, such as material
and manufacturing cost [5], pressure drop [5, 6], and
pumping power [5, 7). Much of this previous work
on transport optimization has focused on particular
applications, and has addressed neither a general
framework for optimization, nor a general theory for
the physical phenomena that relate transport
enhancement and dissipation. In this paper, we focus

on these two fundamental aspects of optimal heat
transfer design : the analysis of the optimization prob-
lem based on reduced variable ‘universal’ scalings;
and the development of a basic understanding of the
underlying physical transport phenomena so as to
allow for a priori evaluation of the viability of a par-
ticular thermal-hydraulic design.

In Section 2 we define the channel flow con-
figuration of interest and state the optimization prob-
lem. In Section 3 we solve the optimization problem
in a formal sense, and relate the results via Reynolds’
analogy to a general hydrodynamic stability criteria.
In Section 4 we describe the experimental apparatus
used to generate the thermal-hydraulic data required
by the optimization procedure. Lastly, in Section 5,
we present results of a channel optimization study
based on several augmentation schemes, and dem-
onstrate the significant savings possible through opti-
mal design.

2. THE OPTIMIZATION PROBLEM

We consider the problem shown in Fig. 1 of incom-
pressible flow in a plane channel of length L and
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FiG. 1. Basic channel geometry for the optimization study.
The channel is of length L and height H, with uniform heat
flux ¢” imposed on the top wall, dD;, and an adiabatic
bottom surface, 4Dy,
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NOMENCLATURE
a groove length (Fig. 2(b)) x,y,z Cartesian coordinates
A area of the y-z channel cross section Y set of fluid properties, {k, pc,, v, p}
b distance of the eddy promoters from the Z, set of geometric parameters for channel
top wall (Fig. 2(a)) geometry n.
B constant in equation (A9a)
¢ groove dwell (Fig, 2(b))
¢, specific heat at constant pressure Greek symbols
C constant in equation (A%) « thermal diffusivity, &/pc,
d diameter of the eddy promoters p constant in equation (A9b)
(Fig. 2(2)) ¥ Reynolds’ analogy censiam
aD,  bottom wall surface (Fig. 1) & non—az}aieg‘ess momentum transfer
3Dy  top wall surface (Fig. 1) coeﬁiczen? in equgtzsﬁ (14)
e groove depth (Fig. 2(b)) rj consta‘nt in faquanon {A9a) '
f friction factor defined by equation (11) 4 nsn-dlmensxonal channel beight,
g gravitational acceleration ) g HlkeT .
g() function defined by equation (Ad) A non»dl.mensgonal Fhermal load,. q"Likd1
g(u)  function defined by equation (A11) 7 n’c?n—dlmens1onal inverse velocity,
H  channel height (Fig. 1) q"L/(k3TR Pr)
k thermal conductivity v kinematic viscosity
i distance between successive eddy- s constant in equation (A9b)
promoter cylinders (Fig. 2(2)) T, shear stress at the wall
L channel length (Fig. 1) ¥ rxon~d1mensmnai' dissipation parameter
Nu Nusselt number, ¢ H/EAT defined by equation (7).
AP pressure drop
Py Prandil numberf v/a Subscripts
" heat flux per unit area c critical
;R ?eynolds number, VH/v i inlet
1me m mixed mean
T temperature n channel geometry
oT total temperature difference defined by o exit
___ cquation (2) . i transition
AT  time-averaged temperature difference w wall
between wall femperature ar}d mixed 0 base geometry, smooth channel
mean temperature of the fluid 1 periodic eddy-promoter channel
0, W ¥e§§c§t§isomponentt§ m} the x-, y- and 2 periodic microgrooved channel.
z-directions, respectively
u, friction velocity, \/(z./p)
v velocity vector Superscripts
|14 channel-average velocity defined by * optimum
equation (1) UB upper bound.

height H, with uniform heat flox ¢ imposed on the
top wall 4P+, and an adiabatic bottom surface 6Dy,
The flow is assumed to be hydrodynamically and
thermally fully developed in x, and independent (on
average) of the spanwise coordinate z. The flow is
forced by a pressure gradient AP/L, resulting in a
channel-average velocity of

lj‘oc Hi2
Vo= —
A -0 J-H2

where u is the x-component of the velocity, v = uf
+0v§+w2, 4 the area of the y-z channel cross section,
and {+)> refers to temporal average. The fluid is
assumed to be characterized by constant (temper-

Lulx,y,2,0)>dydz {1

ature-independent) properties given by the thermal
conductivity k, the volumetric specific heat pe,, the
kinematic viscosity v, and the density p. Natural con-
vection and all compressibility effects are assumed
negligible. The set of physical properties will be
denoted ¥ = {k, pc,. v, p}.

In addition to the basic geometry in Fig. 1, we
shall also consider two heat transfer enhancements
corresponding to the addition of (a) periodic eddy
promoters and (b) microgrooves, shown sche-
matically in Figs. 2(a) and (b), respectively. The eddy
promoters in Fig, 2(a) are adiabatic, and thus they
effect the heat transfer only through flow modi-
fication. We shall denote the base geometry in Fig. 1
as Z,, and describe the two enhancement geometries
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FiG. 2(a). The geometry of the periodic eddy-promoter chan-

nel is described by the distance between successive eddy-

promoter cylinders, /, the diameter of the eddy promoters,

d, and the distance of the eddy promoters from the top wall,
b. The eddy-promoter cylinders are adiabatic.
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Fi1G. 2(b). The geometry of the periodic microgrooved chan-

nel is described by the depth of the groove, e, the groove

length, a, and the groove dwell, ¢. The vertical scale of the
grooves is greatly exaggerated for clarity.

by the sets Z,, Z, = {d/H,b/H, l{H} for the eddy pro-
moters, and Z, = {e¢/H,a/H,c/H} for the micro-
grooved channels. Here d is the eddy promoter cyl-
inder diameter, b the distance between the eddy
promoters and the top wall, and / the distance between
successive cylinders in the array ; e is the microgroove
depth, a the groove length, and ¢ the groove dwell. The
geometries Z,, Z,, Z, are all periodic, and thus the
concept of being fully developed is well defined [8, 9].

We now construct the minimum-dissipation trans-
port problem associated with these geometries (we
do not consider the minimum-stress and minimum-
pressure-drop problems as they follow along similar
lines). To begin, we write the temperature difference
0T =T, o— T as

,r

q’L

v+ AT )

oT =
p

where T, is the heated wall temperature at x = L,
T, the mixed mean temperature of the fluid at the
inlet (x = 0), and AT = (T, (x) — To(x))>. Here the
overbar refers to an average in x over length scales of
the order of the periodic enhancement structures (/
and a are assumed to be small compared to L). The
mixed mean temperature T,(x) is given by

1 0 Hf2
To(®) =75 f_ an <uT>dydz. 3)

Note that temperature gradients across the channel
walls are assumed negligible.
In terms of the above temperature difference we can
now state the optimization problem as
min {APVH} forfixed{q”,6T,L, Y} (4)

V.H.Z,
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where the parameter {APV H} is the total viscous
dissipation (pumping power) per unit width of the
channel. Essentially, problem (4) requires that for a
given thermal load, ¢”, that we find the flow velocity
V, channel size H, and enhancement parameters Z,
that minimize the total dissipation for a fixed
maximum wall temperature 7. We have chosen the
wall temperature as our thermal constraint as this is
the quantity that typically limits the structural integ-
rity and performance of machinery or devices on the
heated surface (e.g. computer chips [4, 6, 7]).

Optimization (4) corresponds to a multivariate con-
strained minimization problem, and inasmuch is
rather difficult to solve. Furthermore, the relationship
between the dissipation and the control and constraint
variables will be highly nonlinear, requiring the solu-
tion of the full Navier-Stokes equation. Our approach
to the problem consists of two parts: first, a non-
dimensional scaling will be introduced that reduces
the optimization problem to a “universal’ curve which
can be obtained on the basis of standard thermal
and hydraulic characterizations; second, a physical
analysis will be developed that allows for a priori
evaluation of the relative effectiveness of various Z,
as regards dissipation minimization.

3. SCALING ANALYSIS OF THE
OPTIMIZATION PROBLEM

3.1. Nondimensionalization

To reduce problem (4) to a universal form we intro-
duce a nondimensionalization in which only fixed con-
straint variables (not control variables) are used to
scale length, time, and temperature. To start, we intro-
duce a Prandtl number, a Reynolds number, and a
Nusselt number

Pr=v/a (5a)
R=VH)y (5b)
Nu(R, Pr; Z,) = ¢"HkAT (5¢)
and a thermal load parameter
A =q"L/kéT. ©)

A non-dimensional dissipation parameter ¥ is defined
as

32 APVHPr*L?
e A )

Lastly, we introduce two non-dimensional control
parameters

A= q’HkdT ®
u=q’'L{(k6TR Pr) ®

where 1 is a non-dimensional channel height, and p a
non-dimensional inverse velocity. In terms of the non-
dimensional variables, equations (5)~(9), the opti-
mization problem (4) can be written as
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min¥ for fixed {¢”,6T, L, Y}

Az,

(10a)
subject to the fixed 4T constraint (2)

MNu+p=1. (10b)

Note ¢ can be interpreted as the ratio of the difference
between the fluid mixed mean temperature at the exit
(x = L) and the inlet (x = 0), to the total temperature
difference 6 T.

To proceed further we introduce the friction factor

. __(AP/L)(H/2)
SR Z,) = Y an
to write equation (7) as
Y = §;2 {fRPA*A? Pri}. (12)

Finally, using the constraint A = Nu(l —u) and the
relation R = A/u Pr we arrive at the following prob-
fem:

min ¥Y(u, Z,)
Yuel0,11.7,

3240 S(AjuPr;Z,)
TS5 Pr Nul(AJuPr,Pr; Z)wP(d —p)*

(13)

Note that by ‘optimal Z,” we refer to both the choice
of n and the choice of non-dimensional parameters
within Z,,.

It can be seen from equation (13) that for a given
Z, the optimal operating conditions depend only on
the Prandtl number Pr, the thermal load A, and
the non-dimensional thermal (Nu(R, Pr;Z,)) and
hydraulic (f(R; Z,)) behavior of the system. In prac-
tice, the optimization proceeds as follows:

(1) choose a fluid (Pr) and the thermal load (A);
(2) for each Z, find p¥ such that

VY=Yt Z,) <Y Z,)Vueo,1];
(3) find Z,» such that
V¥ =W(h,Z.) <Yt Z,)V Z,.

The dimensional ¥ and H are then determined as
follows: p implies R, Nu and hence 4; A implies H;
knowledge of H and R then gives the velocity V.

3.2. General hydrodynamic considerations

The above minimization for a given Z, is relatively
simple, and can be effected once one set of exper-
imental measurements Nu(R, Pr; Z,), f(R; Z,) have
been conducted (for any H). Unfortunately, the num-
ber of parameters in each Z,, and the potentially large
number of different Z, (e.g. eddy promoters, micro-
grooves, flow oscillation [3, 10]) can lead to an intrac-
table problem. It is thus clear that a broad theory
relating hydrodynamic behavior and scalar transport
is required in order to reduce the number of interesting
enhancement geometries. To this end, we analyze our
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problem for the case of Reynolds’ analogy flows
[11, 12], in which we assume that

2y Nu(R,Pr; 7Z,)

FR:Z,) =52 (14)

8R; Z,)
S
where 7 is ‘Reynolds’ analogy constant” which should
scale as Pr~ ' (and is a function only of Pr), and ¢
represents non-analogous momentum transfer {11].
Note that although equation (14) is perfectly general,
it will only be useful for small ¢/ Nu. A detailed analysis
of ¢ for transitional eddy promoter flows is given
in ref. [11], in which the utility of cxpansion (14) is
demonstrated.
We now insert equation (14) into equation (13),
and neglect the O(g) term to reduce our minimization
problem to

332 JAS 1
5 Nu*(AJuPr,Pr:Z,) p*(1—p)*
(15)

mnY¥Y =
Vuel0.1).2,

To get an upper bound for W}, W*V®, we neglect vari-
ations of Nu with p to obtain (see the Appendix)

W*UB — yAS Nu=2(5A/2Pr, Pr: Z,). (16)

Assuming (plausibly) that ¥;V® and ¥* behave simi-
larly, we can make the following conclusions as
regards the relationship between enhancement and
dissipation minimization. First, we see that an
increase in Nu at fixed R (here 5A/2Pr) by an enhance-
ment Z, does result in a decrease in dissipation ¥ (in
fact a quadratic decrease), consistent with the con-
ventional wisdom that an increase in Nu(R) is in some
sense ‘good’. Note that for the minimum-stress and
minimum-pressure-drop problems the results are
similar, however, the reduction in these quantities is
only linear in Nu~'. Second, as the thermal load A
increases, an enhancement procedure is required
which modifies the Nusselt number at higher Reyn-
olds numbers. In essence, equation (16) indicates that
5A/2Pr is roughly the Reynolds number at which
the most important dissipation reduction can be
achieved ; increasing Nu at other Reynolds numbers
will have a less significant effect.

Both of these conclusions can be interpreted in
terms of our previous work on transport enhancement
by flow destabilization [10, 11]. As regards the first
point, the increase in Nu at fixed R is best considered
as a decrease in the stability of the flow, that is, an
increase in the correlated velocity—-temperature fluc-
tuations (perhaps better measured by a Stanton num-
ber than a Nusselt number). The enhancement prob-
lem then becomes one of maximizing destabilization
while maintaining non-analogous momentum trans-
port (¢ in equation (14)) small; a detailed analysis
of this problem for laminar unsteady eddy promoter
flows is given in ref. [11]. As regards the second point,
it is clear that once a flow is destabilized by some
enhancement procedure Z, at some critical Reynolds
number R, for R > R, there will be significant non-
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linear saturation ; the relative increase in Nusselt num-
ber will decrease, and non-analogous drag will domi-
nate. As A increases and the Reynolds number at
which optimal enhancement occurs increases, new
augmentation schemes Z, must be effected to de-
stabilize the new flow. As we know that with increasing
R the range of naturally unstable scales increases (e.g.
the energy cascade), this implies that with increasing
A we require destabilization at smaller and smaller
(intrinsically stable) spatial scales—in essence, scale-
matched destabilization.

4. EXPERIMENTAL APPARATUS AND
THERMAL-HYDRAULIC DATA

To demonstrate the utility and validity of the opti-
mization procedures and physical arguments
described in the previous sections, we have conducted
a series of experiments for the geometries Zo, Z,, Z,
shown in Figs. 1 and 2. The experiments were carried
outin air (Pr = 0.71)in a low-turbulence wind tunnel ;
details of the Z, and Z, test sections are presented in
Figs. 3 and 4, respectively. The only cases studied
in this paper are Z,, Z, = {d/H = 0.2, b/H = 0.25,
I/H = 3.33}, and Z, = {¢/H = 0.025, a/H =0.035,
¢/H = 0.015}. The ratio of the width of the channel
W, to the channel height H is W/H = 9.0, which is
considered sufficiently large that the results can be
considered close to those for an ‘infinite’ planar chan-
nel; the friction factor data presented are further cor-
rected by subtracting out the shear stress at the side
walls. The channel is fitted with electrical strip heaters
on the top channe] wall to deliver the necessary uni-
form heat flux ¢”".

For the optimization studies of interest we require
a set of £, Nu data for each Z,. A single H is chosen,
and the flow rate is varied to achieve a range of Reyn-
olds numbers. For each Reynolds number the pres-
sure drop and fluid and wall temperatures are
measured, thus allowing the f(R;Z,) and Nu(R,
Pr; Z,) curves 10 be constructed. The pressure drop is
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F1G. 3. Details of the test section for the geometry Z,. For
the geometry Z, the same test section is used with the eddy
prometers removed. Al units are in meters,
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Fi1a. 4. Details of the test section for the geometry Z,. The
inner walls in the heated region are made of high conductivity
aluminum to insure that the temperature difference between
the thermocouples and the grooved surface is small. The
nicrogrooves are machined on the aluminum plates to high
precision using a shaper. All units are in meters.

measured with an MKS Baratron differential pressure
transducer, and the flow rate is calculated from pitot-
static velocity measurements at outflow. Temperature
measurements are made using copper-consiantan
thermocouples. All measurements are deemed accur-
ate to the 10% necessary for the optimization studies
undertaken.

Lastly, we note that the flow is allowed to become
thermally fully developed in the streamwise direction
X before any measurements are taken. All measure-
ments are taken after a distance of roughly 55H from
the inlet of the channel, and roughly 35H from the
beginning of the heated region. The resulting entrance
regions are sufficient to obtain hydraulically and
thermally fully-developed flat-channel laminar flows
for Reynolds numbers R < 800, and fully-developed
flat-channel turbulent flows for Reynolds numbers
R > 5500 {13]. The entrance length for the geometries
Z 1, Z, will be much shorter than for the smooth chan-
nel Z, as a result of destabilization. In addition to
these theoretical considerations of entrance-length
effects, it has also been verified directly from measure-
ment that both the (time-average) wall pressure and
temperature vary linearly with x, consistent with fully
developed flow.

We plot in Figs. 5 and 6 the f(R;Z,) and
Nu(R,Pr=071;2,) curves for the geometries
Zy, Z, Z, that will be used in the optimization studies
that follow. We supplement our new data with ana-
Iytical solutions [14] and numerical solutions [11] at
lower Reynolds numbers, and previous experimental
correlations and power laws at higher Reynolds num-
bers [14]. The Nusselt number data obtained from
Pr = 1 numerical solutions [11] are corrected for the
Prandt! number of interest here (Pr = 0.71) assuming
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F1G. 5. Friction coefficient data. Z; (smooth channel): O, experiment ; — - —, laminar analytical solution

f=12/R; , turbulent correlation f = 0.040/R"? [14] (the dashed line indicates the Reynolds number

range for which the correlation is somewhat suspect). Z; (eddy promoters): [, experiment ; <, numerical

[11]. Z, (microgrooves): A, experiment. In all cases the solid symbols refer to laminar (steady or unsteady)

flows, and the open symbols refer to turbulent flows. Note the ‘premature’ drag crisis (M) in the Z, eddy-
promoter geometry when the channel flow becomes turbulent at R = R, ~ 1300.

a Prandtl number power law dependence on enhance-
ment as given in ref. [10]. Note that for purposes
of approximate optimization we have extended the
turbulent correlations for f and Nu down to the tran-

sitional Reynolds number, R, = 1300, although it is
clear that the correlations are strictly valid only at
somewhat larger R. The suspect region of the cor-
relation is indicated by a dashed line.
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FiG. 6. Heat transfer data for Pr = 0.71. Z, (smooth channel): O, experiment ; —-—, laminar analytical

solution Nu = 2.70; . turbulent correlation Nu = 0.020R%® Pr®* [18] (the dashed line indicates the

Reynolds number range for which the correlation is somewhat suspect). Z, (eddy promoters) : [, experi-

ment (M indicates transitional drag crisis); <, numerical {11). Z, (microgrooves): A, experiment. In ali

cases the solid symbols refer to laminar (steady or unsteady) flows, and the open symbols refer to turbulent
flows.
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FiG. 7. A plot of ¥(u, Z,) for a fixed thermal load of A = 800 based on the data sets of Figs. 5 and 6. The
minimum of ¥(u, Z,) for each Z, curve gives one point ¥* (A = 800) in Fig. 8. Note that from u* we
can find the optimizing channel height H and flow velocity V.

The experiments for the microgrooved channel geometry Z,. This approximation appears reasonable
were, in fact, carried out for heating and micro- for the small e/H considered here.
grooves, on both channel walls, as shown in Fig. 4. To
construct ope—s1ded heating/microgrooved data from 5. OPTIMIZATION RESULTS
these experiments we assume that Nuj ggeq ~ Nty gded

and that  figees = 1/2[fosaeatf(;Zo)), where We present here results of the optimization pro-
f(¢; Z,) refers to the friction factor in the flat-channel  cedure developed in Section 3 based on the data of
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FiG. 8. A plot of ¥}(A) for Z,, Z,, and Z, based on the data sets of Figs. 5 and 6, Z, (smooth channel) ;

——, global optimum corresponds to laminar flow; ——, global optimum corresponds to turbulent

flow. Z, (eddy promoters): [J, experiment (M indicates transitional drag crisis). Z, (microgrooves):
A\, experiment.
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Section 4. In Fig. 7 we plot W(u,Z,) for a fixed
A =800and Z,, Z,, Z,, while in Fig. 8 we plot W*(A)
for the geometries Z,, Z,, Z,. Figure 7 demonstrates
how Fig. 8 is constructed : the minimum of each Z,
curve in Fig. 7 results in one point (at A = 800) on
Fig. 8, as described by the optimization procedure
outlined at the end of Section 3.1. For the cases of
laminar flat-channel flow and power-law correlation
turbulent flat-channel flow the minimization over u
for each A can be carried out analytically, as sum-
marized in the Appendix. It can be seen from Fig. 7
that for a given geometry Z,, operating at a non-
optimal u can significantly increase the dissipation;
this illustrates the importance of optimization even
for the case of ‘unenhanced’ heat transfer.

Figure 8 demonstrates that the scale-matched desta-
bilization theory proposed in Section 3 is, indeed,
valid. First, it is seen from Fig. 8 that for very low A,
Z, laminar flow performs the best, as the A-R
matching (Section 3) insures that enhancement can
have little effect. Second, as A increases, the macroscale
eddy promoters Z; becomes relatively more efficient
than flat channels Z,; this is due to the fact that the
eddy promoters destabilize the flow and increase the
Nusselt number, thereby decreasing dissipation by
equation (16). The fact that ¢ in equation (14) is small
for these flows despite significant destabilization is
due to the fact that channel flows are only viscously
(slightly) stable, as described in detail in ref. [11]. Note
that the transitional eddy-promoter flows are optimal
over a broad range of A due to the beneficial effect of
the premature cylinder drag crisis; in fact, it appears
that laminar eddy promoters are never selected, as
they are bettered at low A by laminar Z, flow, and at
higher A by transitional eddy promoters.

Third, as A increases even further, eddy promoters
are no longer efficient at destabilizing the flow at
R ~ A (the necessary R for destabilization according
to equation (16)), due to the fact that the eddy-pro-
moter macroscales are themselves naturally unstable
at this turbulent Reynolds number. It is at this point
that the microgrooves become important, as they
match the ‘stable’ part of the flow, the viscous sub-
layer [15]. The microgrooves become important at
ugef/v = 30 (implying R = 16 666 and thus A = 1400),
consistent with past studies on the effect of roughness
in transport processes. Here u, is the friction velocity,
whichis defined asu, = \/ (zw/p), where 1, is the shear
stress at the wall. (Details of the physics of our regular
two-dimensional uniform roughness as compared to
‘sand grain’ roughness [16] are given elsewhere [17].)
Note the savings due to flow destabilization at low A
appear to be larger than those at high A; aithough
this may reflect the intrinsic instability of turbulent
flows, it may also be due to a non-optimized micro-
groove surface.

There is a great deal of information in Fig. 8 as
regards the scaling of minimum dissipation with ther-
mal load. For instance, if A is increased from 10* to
10° (due to, say, a decrease in the allowable 8T by a
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factor of 10), the dimensional minimum dissipation
{APV H}* ~ W* increases by roughly a factor of 10°;
this illustrates the rather severe penalty associated
with stringent thermal load requirements. If we
assume that Nu ~ RF. it follows from Reynolds’
analogy argument and upper bound (16) that the
minimum dissipation \P* scales as ¥* ~ A** %, which
is consistent with the data of Fig. 8 for a (physically
plausible) value of § stightly less than unity.

Much work remains to be done on understanding
the detailed physics of both the macroscale and micro-
scale destabilization [11, 17}, as well as on extending
the optimization procedures described here to include
non-fully developed effects. inket and exit effects. and
more complicated configurations {17]. These exten-
sions are relegated to other papers: our primary focus
in the current paper is on the scaling of the minimum-
dissipation optimization problem. and on under-
standing the relationship between the physics of trans-
port enhancement and dissipation minimization.
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APPENDIX

We consider here three cases in which the optimization
problem (13)

32 A® f(AjuPr)
'5° Pr Nu*(Aju P (1—p)?

WH(*) < ¥(p) =

Vuel0,1]

(A1)

can be ‘solved’ in closed form. The three flows amenable to
analytical treatment are: Reynolds’ analogy flows ; laminar
flat-channel flow; and turbulent flat-channel flow. These
exact optimizations are interesting not only in terms of the
results they produce, but also in terms of the insight they
give into the optimization procedure.

Reynolds analogy flow upper bound
Here we assume that equation (14) holds with ¢ =0

sy =2

(A2)

for which expression (A1) can then be written as
322 yA® 1
5 Nu*(AjpPr, Pr) 2 (1—p)*

To proceed further we construct an upper bound for the
minimum of W(u) by neglecting the variation of Nu with u
and minimizing the function

9 = (A —p*] " pel0, 1). (A9)

It is readily shown that g(2/5) < g(u) for all ue[0, 1}, from
which it directly follows that

w* =2/5
P*UB = A Nu=(SA/2Pr, Pr).

Y = (A3)

(A5a)
(ASb)

This result is used extensively in the paper to motivate the
concept of scale-matched destabilization.

Laminar flat-channel flow
For laminar flat channel flow we have the exact solutions
[14]

f=12/R
Nu =270

(A6a)
(A6b)
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giving for ¥ (u)

32 120° 1
Y =

From our previous analysis of Reynolds’ analogy flows
it is clear that if we minimize equation (A7) over all uel0, 1]
that we will obtain u* = 2/5, ¥* = 0.305A°,

The result ¥* = 0.305A° is only valid for a limited range
of A, as laminar flow can only occur for R < R,.. (We take
R, here to be R, = 1300; although R, can be larger than
this value in quiet experiments, in most engineering situations
R, =1300 is a very good predictor of transition.) This
implies from equation (9) that we should minimize ¥ (i) only
for (A/R. Pr) < u < 1.If(A/R, Pr) < 2/5 our previous result
holds, u* = 2/5, ¥* = 0.305A°, however, if (A/R,. Pr) > 2/5
the minimum ¥ now occurs at the endpoint u = A/R Pr.
Our final result for laminar flow is therefore

2
0<A<¥=369.2 w*=12/5
W+ = 0.305A° (A8a)
3692 <A< R, Pr=923 u* =A/923
8975.05A°
- 5.05A (ASH)

T (- (A/923))°

where the numerical values given are for Pr=0.71,
R, = 1300. No laminar solution exists for A > R, Pr, as in
this case the mixed-mean temperature rise alone is greater
than the allowable 6 7. Note that as A approaches the limiting
value R, Pr the dissipation goes to infinity, as VH is finite
but H goes to zero.

Turbulent flat-channel flow
We assume here power law correlations for the friction
factor and Nusselt number

f = BR"
Nu = CR® Pr’

(A9a)
(A9b)
giving
P2 B AN 1
Y = ?5‘ F Pritn+%-3p u3+q—3ﬂ(1 __#):r (A10)

Defining the function g(u) as
I = (=] (A1D)

it can be readily shown that for u*= (3+n-38)/
6+n-38), g(u*) < g(wV uel0,1], from which the cor-
responding minimum dissipation can be calculated from
equation (A10) as ¥* = W(u*).

For turbulent flow in the channel shown in Fig. 1 we have
B=0.04,9n= —0.2,C=0.02 =08, & =0.4 {14, 18], for
which we obtain

u*=2/17 (Al2a)
P* = 258.14A%4 (A12b)

where the numerical value in equation (A12b) is for
Pr = 0.71. The value of u* = 2/17 for turbulent flow is less
than the corresponding value (A8a) u* = 2/5 for a laminar
flow, implying that for optimal-performance turbulent flow
relatively more of the temperature rise should be lateral as
opposed to streamwise.

Turbulent flows can only exist for R> R ,=>pu <
(A/R, Pr), and thus equations (A12) are, in fact, only
valid for (A/R, Pr) > 2/17. To be more precise for lower A
an ‘endpoint’ analysis similar to that used for laminar
flow should be performed, the detail of which we do not
present here. Note that the actual flat-channel minimization
summarized in Fig. 8 represents the minimum over both
!aminar and turbulent flows, with endpoint extrema taken
into account.
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ENLEVEMENT DE CHALEUR AVEC DISSIPATION MINIMALE PAR
DESTABILISATION CONTROLEE DE L’ECOULEMENT

Résumé—On considére ’enlévement convectif de chaleur, a dissipation minimale, sur une paroi par un fluide
avec déstabilisation de I'écoulement. On développe un schéma universel pour le probléme d’optimisation et
on montre 4 partir des arguments liés 4 I’analogie de Reynolds et 4 la stabilité hydrodynamique que la
solution du transport & dissipation minimale correspond a la déstabilisation d’écoulement & un nombre de
Reynolds (et une échelle spatiale associée) qui augmente (diminue) quand la charge thermique croit. Les
économies significatives de dissipation sont montrées possibles dans une étude simple d’optimisation pour
le transfert de chaleur dans un canal, & partir de données expérimentales pour différentes procédures
d’accroissement. Le schéma d’optimisation de I’augmentation de transport va depuis les promoteurs de
turbulence a4 macroéchelle jusqu’aux éléments de rugosité a microsillon, avec des charges thermiques
croissantes, ce que vérifie la validité de la présente théorie.

MINIMALE ABFUHR VON DISSIPATIONSWARME DURCH
STROMUNGSDESTABILISIERUNG

Zusammenfassung—Es wird die Minimierung der konvektiven Dissipationswiarmeabfuhr von einer Wand
an ein strdmendes Fluid untersucht, wobei eine destabilisierende Stromungsbeeinflussung in Erwigung
gezogen wird. Eine allgemeingiiltige Einteilung fiir die Problemoptimierung wird entwickelt. Uber die
Reynoldsanalogie zu den hydrodynamischen Stabilititskriterien wird gezeigt, daB die dissipations-
minimierende Losung des Transportproblems, bei steigender thermischer Last (gegebene Reynoldszahl
und entsprechende rdumliche GréBenordnung) mit einer steigenden Stromungsdestabilisation in
Einklang steht. Durch eine, auf experimentelle Daten gestiitzte, Optimierungsstudie wird mit Hilfe
verschiedener MafistabsvergroBerungen die signifikante Verminderung der Reibungsveriuste am Beispiel
des Wirmeiibergangs an einem Kanal nachgewiesen. Die optimale MaBstabsvergréBerung fiir die Trans-
portvorgange wird benutzt, um bei steigender thermischer Last von makroskopischen Wirbelerzeugern auf
Elemente mit Micro-Rauhigkeiten zu schlieBen und hierdurch die Richtigkeit der Destabilisationstheorie
zu beweisen.

TEIUIOOTBOJ, C MUHUMAJIBHON JHUCCHITAUMEN, OPTAHU3OBAHHON ITYTEM
BBEJIEHMA B IIOTOK BO3MVYIIEHUN COOTBETCTBVIOIETO MACHITABA

Annoramms—PaccMaTpuBaeTCd KOHBEKTHBHBIM OTBOJ TEMJIA OT CTEHKH K MOTOKY XHIKOCTH ¢ MUHHMA-
JILHBIM PAcCesHNEM INPH BHECEHHH B NMOTOK BO3MYILLEHMIl cOOTBETCTBYIONIEro Macutaba. Pazpaborana
yHHBepCaJIbHasi TeXHHKAa HOPMHPOBKH JUIA NMpoOGjieMbl ONTHMM3AIMA, H Ha OCHOBE aHajorunm Peifro-
JIbACA M cOOOpakeHuH T'HIpOINHAMMYECKOH YCTORYMBOCTH MOKA3aHO, YTO PEIiCHHE IS CJy4as MHHH-
MaJbHOTO paccesiHds COOTBETCTBYET AecrabHiM3auMu 1noToka npH 4ucie PeiffHonbaca (u
COOTBETCTBYIOUIEM IPOCTPAHCTBEHHOM MacmTabe), KOTOPoe BO3pacTaeT (YMEHBIUACTCS) C YREJIHYSHHEM
TemsoBo#l Harpy3kd. Ha ocHOBe JKCHEpHMEHTANBHBIX JNAHHBIX, MOJYYCHHbIX MPH HCCICIOBAHHA Tepe-
Hoca TelUla B KaHaje, NoKa3aHa BO3MOXKHOCTbL 3HAYMTELHOTO CHHKCHHS PACCesHMs I HECKOJIBKHX
BapHAHTOB HHTeHCHGHKaluu nepenoca. I1okasaHo, YTO MPH YBEIMYCHHH TEIUIOBOH HArpy3KM MHTEHCH-
$uxanmio nepeHoca ONpeNeNsIoT CHakYajJa MaKpoMacinTabHbie BHXPH, a 3aTeM 3JIEMEHTHI MHKPOCTPYK-
TYpPHOI IIEPOXOBATOCTH.



